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Abstract  

This paper partitions a time series of asset returns into vectors of sequential returns. It clusters these 

vectors into different “momentum families” using K-means clustering. Then, it is probabilistically 

evaluated whether a member of a certain momentum family is more likely to appear immediately after 

witnessing members from other momentum families in the time series. Our results show that the 

distribution of frequencies with which these momentum families follow each other is not uniform, and 

that some families are more likely to appear in the future given the current family present in the time 

series. We incorporate this idea into a trading model, outperforming “buy and hold” on assets with 

minimal external information, specifically Bitcoin ETF and commodity ETFs. It also extracts more 

information from price movements than a vanilla autoregressive model. 

Keywords: Clustering, financial time series, autoregressive  
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Introduction  

Momentum is often of great interest to traders and asset managers. Those who are not 

implementing arbitrage strategies can look to be long or short in an asset that is showing sustained 

momentum in a certain direction, instead of looking for orthogonal alpha in the opposite direction. The 

central philosophy behind momentum is that the past values in the time series will indicate what 

happens in the future. This is the basis behind processes such as ARMA-GARCH as well. In our opinion, 

the limitation of AR-like models is that only static snapshots of the past are combined with single 

coefficients to predict the future. For example, in a financial time series of returns, you might assign a 

coefficient to yesterday's return and another coefficient to day-before-yesterday’s return. This 

incorporates information from the past but does not consider how yesterday's return might relate to the 

day before that. It gives a static, sliced view of the past that we believe is a hinderance when trying to 

capture momentum. In this paper, we believe we improve that framework by creating a more 

informative data point: a vector of sequential returns. This vector gives us a relative direction in which 

the sequential returns point, as well as their magnitude. These vectors can be clustered such that similar 

ones are grouped together. 

Sequential Return Vector  

The sequential return vector (SRV) is the fundamental basis of our methodology. In our paper, 

we create it by first obtaining a financial time series with daily resolution, such as the daily price of a 

stock. After transforming the price into market adjusted log returns, we evenly partition that time series 

into SRVs of a desired length and put them into a matrix. If our desired length of each vector is three and 

our total time series is nine data points, the matrix starting at day 𝒕 is as follows: 

𝐿𝑒𝑡 𝑆 𝑏𝑒 𝑎 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑜𝑓 𝑚𝑎𝑟𝑘𝑒𝑡 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 log 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 

𝐌𝐭 = |

𝑆𝑡 𝑆𝑡+3 𝑆𝑡+6

𝑆𝑡+1 𝑆𝑡+4 𝑆𝑡+7

𝑆𝑡+2 𝑆𝑡+5 𝑆𝑡+8

| 
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One thing to note is that if the length of our time series is not a multiple of the length of our SRVs, we 

simply drop a few datapoints from the end of our time series so that it matches. Other considerations 

about the SRV matrix are mentioned in the appendix. 

Clustering Columns in SRV Matrix 

After taking in all the considerations and building our SRV matrix, we must cluster the columns 

such that similar columns are grouped. Ultimately, when we finish clustering, we expect there to be 

distinct clusters of SRVs that represent different families of momentum. This clustering approach is 

effective because it maintains the information we get about the momentum from each SRV. For 

example, we may have a taxonomy of SRV clusters as seen below: 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐶𝑒𝑛𝑡𝑒𝑟 1 (𝑢𝑝𝑤𝑎𝑟𝑑 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚): |
0.1
0.2
0.3

| 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐶𝑒𝑛𝑡𝑒𝑟 2 (𝑉 − 𝑠ℎ𝑎𝑝𝑒𝑑 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚): |
0.2

−0.1
0.3

| 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐶𝑒𝑛𝑡𝑒𝑟 3 (𝑛𝑜𝑖𝑠𝑒): |
0.001
0.002
0.001

| 

Through this sample taxonomy, we can see that every single return in a given SRV simultaneously 

determines which cluster it belongs to. For example, if the third return in the noise cluster center was 

dramatically increased, that vector would point somewhere completely different. However, if we 

dramatically increase the third return in the upward momentum center, it would likely point in a similar 

direction. This is an improvement to a traditional autoregressive process because if we apply the same 

“third return changing” test, our final answer will largely depend on the coefficient of that third return in 

our model. Its value relative to the other 𝑆𝑡−𝑛 returns would not carry any weightage in the final 

prediction. 
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 Now that we have established the rationale behind using clustering for grouping the columns in 

our SRV matrix, we proceed to use K-means clustering1. This is a good choice because different 

groupings of SRVs can be generated while also specifying how many clusters to make, a feature not 

available in other algorithms like DB Scan. 

Results on Bitcoin ETF 

 We now apply our procedure on the Grayscale Bitcoin Trust ETF (GBTC). This ETF is passively 

invested in Bitcoin and gives us a way to follow the price movements of Bitcoin while including demand 

from people without crypto wallets, etc. Unlike traditional securities issued by companies, GBTC does 

not have earnings, press releases, proxy wars, and other corporate actions. Price movements are 

primarily affected by investors and their expectations. We obtain our data from the Yahoo Finance API 

“yfinance” package in Python and pull daily closes starting from 2021/1/01 (Monday) till 2024/12/13 

(Friday) and exclude weekends. 

First, we calculate market adjusted log returns2 on GBTC, using the S&P 500 as the market. Next, 

we decide on the length of our SRV and the number of clusters to group the SRVs. For the length, we 

picked 5 days as we hypothesized that most trends in a publicly traded ETF would last approximately 5 

business days or one trading week. Anything shorter than a week would include too much noise and 

anything longer would start to create broad regimes rather than identifying patterns. For the number of 

clusters, we picked 4. Intuitively, we expect to see the following four clusters: noise, upward trending, 

downward trending, and V-shaped3. After running K-means, we get the following cluster centers for our 

SRVs: 

 

 
1 Details on implementation for K-Means provided in appendix 
2 Details on calculation are provided in appendix 
3 These expectations are intuitive and subject to change based on the asset, time horizon, and more 
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𝐶1 = |
|

0.20
3.97
9.86

−1.68
4.26

|
| , 𝐶2 = |

|

2.42
−5.43
2.91
0.04

−4.10

|
| , 𝐶3 = |

|

2.54
2.18

−4.40
2.41

−1.60

|
| , 𝐶4 = |

|

−3.59
−1.25
−1.11
−2.96
2.09

|
| 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛 𝑜𝑓 𝐶𝑒𝑛𝑡𝑒𝑟𝑠: 𝐶1 = 16.61, 𝐶2 = −4.16, 𝐶3 = 1.13, 𝐶4 = −6.82 

𝑁𝑜𝑟𝑚 𝑜𝑓 𝐶𝑒𝑛𝑡𝑒𝑟𝑠: 𝐶1 = 11.58, 𝐶2 = 7.78, 𝐶3 = 6.23, 𝐶4 = 5.36 

∗ 𝑉𝑎𝑙𝑢𝑒𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑖𝑛 10−2 

Consistent with our hypothesis, we see that 𝐶1 can roughly be categorized as upward trending, 

𝐶2 as W-shaped, 𝐶3 as zero-sum or noise, and 𝐶4 as downward trending. Now we investigate whether 

seeing a certain cluster can tell us which cluster will come next. To do this, we use our trained K-Means 

model to label the SRVs in our study period and count the frequency with which each cluster member 

follows another. This creates a transition matrix that indicates the likelihood of each cluster member 

following another. We also implement Chi-Squared Goodness-of-Fit to determine whether these 

probabilities of appearance are truly different from a uniform distribution. If the p-value is low for a 

certain cluster, it implies that clusters on 𝑡 + 1 will appear asymmetrically. 

GBTC Cluster 

Probabilities 

Likelihood of Observing on 𝒕 + 𝟏 Freq. 𝝌𝟐 GOF 

𝐶1 

(Upward) 

𝐶2 

(W-shaped) 

𝐶3 

(Noise) 

𝐶4 

(Downward) 

N p-value 

Cluster 

Observed 

on 𝒕 

𝐶1 16.67% 16.67% 16.67% 50.00% 6 0.57 

𝐶2 30.00% 0.00% 40.00% 30.00% 10 0.31 

𝐶3 0.00% 28.57% 28.75% 42.86% 21 0.04 

𝐶4 9.09% 13.64% 40.91% 36.36% 23 0.08 

 

We can see – with statistical significance in row three – that you are very unlikely to see the 

upward trending 𝐶1 after 𝐶3 and very likely to see the downward trending 𝐶4 after 𝐶3. Looking at row 
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four, we see that you are most likely to see noise or further downward trends following the downward 

trending 𝐶4. 

Trading Model Now we incorporate this insight into a trading methodology. In our approach, we 

iterate through the SRVs in the time series and classify them into a certain cluster using our K-Means 

model. The K-Means model is trained on the first 70% of the data and used to classify the remaining 

30%. Next, we use our predicted label at 𝑡 along with the transition matrix computed earlier to 

determine the most likely cluster to appear at 𝑡 + 1. If the most likely cluster is noise, we pick the 

second most likely cluster as there is no action worth taking if noise is expected. If our hypothesized 

future cluster has a negative total return, we are short for the duration of the SRV. In all other cases, we 

are long. The results on the 30% section of test data are seen below, along with a vanilla buy and hold 

strategy shown in blue. The green dots signify taking long positions and the red dots signify taking short 

positions.

 

Fig 1.1 GBTC Trading Performance Comparison 
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As seen in Fig 1.1, the strategy of SRV clustering outperforms buy and hold in the 30% test period in our 

study period. It performs very well in bearish periods by making key short positions and follows buy and 

hold in bullish periods. This is consistent with our design of the trading model. 

 AR Comparison Now we compare our strategy with a traditional AR-model, proving that it is 

more effective at extracting information from the past. We use the exact same study period from before 

with the same 70-30% split of train and test. After plotting ACF and PACF charts, we determine that 

AR(1) is the most appropriate choice. We use the following formula: 

𝑆𝑡̂ = 𝛽1𝑆𝑡−1 + 𝛽0 

After fitting the AR(1) model on the first 70% of the data, we make predictions on the remaining 30% of 

the data. Then, these predictions are incorporated into a trading methodology similar to before. If our 

AR model predicts a negative return for the next day, we are short for that next day. In all other cases, 

we are long. The results for the 30% test section are plotted below along with buy and hold, and our 

momentum clustering strategy: 

 

Fig 1.2 GBTC Trading Performance Comparison with AR(1) 
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From Fig 1.2 we can see that AR(1) primarily expects a negative return in the future, every day. Thus, 

following our strategy, we end up being short about 98% of the time and our cumulative returns look 

opposite to buy and hold. The original momentum clustering strategy still outperforms the rest. This is 

an encouraging result because it indicates that we can extract more information from the past than a 

traditional AR model and still beat buy and hold. 

 SRV Directionality Now we analyze the different directions an SRV can point and what that says 

about the directionality of the SRV right after it. We begin by first using our entire dataset and removing 

our train/test split. Then the SRVs are converted into unit vectors. Although it is likely that magnitude 

plays a role in analysis, this section analyzes purely the directionality. The tool used to analyze 

directionality in SRVs is the dot product. It can give a rough but practical number that shows where one 

SRV points relative to another. Note that the dot products will always be between -1 and 1, since we are 

dealing with unit vectors. We begin by calculating the dot product of every adjacent pair of SRVs at 𝑡 and 

𝑡 + 1. Next, we come up with a quantitative measure that tells us how closely an SRV represents 

perfectly positive or perfectly negative momentum. This is done by first creating examples of SRVs that 

represent these scenarios. For example, if we look at SRVs of length five, we will have the following 

“perfect” SRVs: 

𝑃𝑒𝑟𝑓𝑒𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =

|

|

1/√5

1/√5

1/√5

1/√5

1/√5

|

|

, 𝑃𝑒𝑟𝑓𝑒𝑐𝑡 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 =

|

|

−1/√5

−1/√5

−1/√5

−1/√5

−1/√5

|

|

 

 

These examples are determined by maximizing or minimizing each value in the unit vectors. In a unit 

circle, the “most positive” direction you can go is (
1

√2
,

1

√2
). This same logic is applied for higher 

dimensions. Next, we calculate the dot product of each SRV with each one of these perfect examples. If 
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an SRV in our data has a dot product of 0.95 with our perfectly positive example, we understand it to 

have largely positive momentum over those days. The same logic applies to the negative example. Now 

that we have some measures, we look at some plots. We start off by looking at the SRVs with the largest 

similarities to our perfect negative example. These would correspond to 5-day periods where GBTC 

largely trended downward: 

 

Fig 1.3 GBTC Largest Negative-Similar SRVs 

This chart indicates a moderately strong positive association between perfect negative similarity of an 

SRV and the dot product of the SRV appearing right after. In other words, the more closely an SRV 

represents perfect negative momentum, the more likely that this sentiment will continue with the SRV 

at 𝑡 + 1. This is a useful result as it shows that the more negative momentum we observe in GBTC, the 

more likely it will continue for another five days. 

 SRV Volatility Prediction In the implementation of our trading model, we simply considered the 

sign of the net return of our predicted SRV when informing us of our trading decisions. Now we 
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investigate whether the most likely cluster predicted for 𝑡 has a similar volatility to the actual SRV 

witnessed at 𝑡. In other words, will the predicted cluster representing the next 5 days of returns have 

the same spread as the actual returns observed in the next 5 days. This is of great interest to those who 

construct positions based on volatility rather than directionality. To do this, we simply compare the 

standard deviation of the elements in our predicted SRV and observed SRV at 𝑡. We perform this 

calculation for our AR(1) predictions as well. 

 

𝐿𝑒𝑡 𝐺𝑡  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑅𝑉 𝑜𝑓 𝐺𝐵𝑇𝐶 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝐿𝑒𝑡 𝐶𝑡  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑒𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑡𝑖𝑚𝑒 𝑡 

𝐿𝑒𝑡 𝐴𝑡  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝐴𝑅(1), 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑 𝑖𝑛𝑡𝑜 𝑎𝑛 𝑆𝑅𝑉 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

 

𝐺𝑡 =
|
|

𝑆𝑡

𝑆𝑡+1

𝑆𝑡+2

𝑆𝑡+3

𝑆𝑡+4

|
| , 𝐶𝑡 = |

|

𝑐1

𝑐2

𝑐3
𝑐4

𝑐5

|
| , 𝐴𝑡 = |

|

𝑎1

𝑎2

𝑎3
𝑎4

𝑎5

|
|  

 

𝐿𝑒𝑡 𝑉𝑡(𝐶)𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑒𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝐿𝑒𝑡 𝑉𝑡(𝐴) 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑒𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 𝐴𝑅(1) 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

 

𝑉𝑡(𝐶) = |𝑆𝐷(𝐺𝑡) − 𝑆𝐷(𝐶𝑡)| 

𝑉𝑡(𝐴) = |𝑆𝐷(𝐺𝑡) − 𝑆𝐷(𝐴𝑡)| 

 

We can now plot 𝑉𝑡(𝐶) and 𝑉𝑡(𝐴) over all SRVs in our test period, observing the accuracy of out-of-

sample volatility estimation for both methods.4 

 
4 When comparing volatility estimations, one can use ARMA-GARCH instead of AR. However, we obtained 

similar results and hence decided to continue with AR(1) for consistency 
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Fig 1.4 GBTC Volatility Estimation 

From the chart, we see that the momentum clustering method consistently provides lower volatility 

error as compared to AR(1) predictions. There seem to be events where both AR(1) and momentum 

clustering have a sharp increase in error, but as a whole we see better estimation through momentum 

clustering. 

Other Assets All results provided in this section use the study period ranging from 2/1/2022 to 

2/1/2025, all at a daily resolution. Parameters of K-Means are tuned as needed, particularly the number 

of clusters. Results of our trading methodology on USO can be seen below. USO is a publicly traded ETF 
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that tracks oil.

 

Fig 2.1 USO Trading Model Performance 

Results of our trading methodology on WEAT can be seen below. WEAT is a publicly traded ETF 

that tracks wheat. 

 

Fig A.3 WEAT Trading Model Performance 
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Results of our trading methodology on CORN can be seen below. CORN is a publicly traded ETF 

that tracks corn.

 

Fig A.4 CORN Trading Model Performance 

Results of our trading methodology on GLD can be seen below. GLD is a publicly traded ETF that 

tracks gold.

 

Fig A.5 GLD Trading Model Performance 
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Results of our trading methodology on SOYB can be seen below. SOYB is a publicly traded ETF 

that tracks soybeans

 

Fig A.6 SOYB Trading Model Performance 

 As seen in the charts, the trading methodology is quite successful for the provided assets, 

particularly during drawdowns. In practice, it can be used as a signal to deviate from a buy and hold 

strategy, especially when the appearance of a negative cluster is very likely. 

Conclusion 

 In this paper, we developed a new methodology to analyze information in a financial time 

series: momentum vector clustering. We partitioned a time series into vectors and clustered the vectors 

into families of momentum. These results could be used in a trading model to outperform buy and hold 

and AR(1) predictions on a Bitcoin ETF and other assets. Our results suggest that some financial time 

series can be viewed as a linear combination of distinct momentum vectors along with some assumed 
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noise. Our methodology proved to be successful on assets where there is minimal dissolution of external 

information, such as cryptocurrency and commodity ETFs. 
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Appendix  

Significance of SRV Length The length of our SRVs carries a lot of significance. It is our 

hypothesis on the duration of momentum regimes that exist within the time series. For example, if we 

use three as the length of our SRVs, we are assuming that most different types of momentum in our 

time series last for three days. Another way to interpret this is the time it takes for momentum to 

dissolve within participants in our financial time series. For example, if most periods of upward 

momentum last for three days, and most periods of downward momentum also lasts for three days, 

three is a safe estimate for the length of our SRVs. 

Starting Point of SRV Matrix In our methodology, it is also important to consider where to start 

our matrix of SRVs. We obviously want to partition the entire time series, so we must start early enough 

so that we have a sufficient amount of data. If we want 4 years of data, we must start building our 

matrix four years before the present. However, given our definition of SRVs, it is obvious that shifting 

our matrix one day forward or one day backward can dramatically change the shape of the vectors in 

our matrix. For example, let 𝑆 be a hypothetical time series: 

𝐿𝑒𝑡 𝑆 = {0.1, 0.9, −0.3, 0.4, 0.5, −0.6, 0.1, −0.4, 0.9 … 𝑆𝑛} 

𝐿𝑒𝑡 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑆𝑅𝑉 𝑙𝑒𝑛𝑔𝑡ℎ = 3 

𝑆𝑜𝑚𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑀𝑡 

𝐌𝟏 = [
0.1 0.4 0.1 𝑆10

0.9 0.5 −0.4 𝑆11

−0.3 −0.6 0.9 …

] , 𝐌𝟐 = [
0.9 0.5 −0.4 𝑆11

−0.3 −0.6 0.9 𝑆12

0.4 0.1 𝑆10 …
] , 𝑴𝟑 = [

−0.3 −0.6 0.9 𝑆12

0.4 0.1 𝑆10 𝑆13

0.5 −0.4 𝑆11 …
] 

 

We can see that just starting our matrix one or two days ahead can change the shape of each SRV in the 

matrix. To address this fact, we must remember that we are ultimately clustering the columns in our SRV 

matrix. If our assumption that three-day momentum families exist within this time series is truly correct, 
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shifting the matrix by a few days will simply change the location of the cluster center of each family in 

our results. This is an effect that we are okay with in this paper. 

Market Adjusted Log Returns In this paper, we calculate market adjusted returns in the 

following manner, using the S&P 500 as the market of choice since all of our tested assets are listed in 

the United States. 

𝑆𝑡 = 𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 𝑎𝑡 𝑑𝑎𝑦 𝑡 

𝑅𝑡 = ln (
𝑆𝑡

𝑆𝑡−1
) 

𝑀𝑡 = log 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑓 𝑆&𝑃 500 𝑎𝑡 𝑑𝑎𝑦 𝑡 

𝐵 =
𝐶𝑜𝑣(𝑅𝑡 , 𝑀𝑡)

𝑉𝑎𝑟(𝑀𝑡)
 

𝐴𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑡 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑙𝑜𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 

𝐴𝑡 = 𝑅𝑡 − (𝐵 ∗ 𝑀𝑡) 

K-Means Implementation In this paper, K-Means was implemented through the sci-kit learn 

library in Python. The parameters used for GBTC are as follows: 

Parameter Value 

N_clusters 4 

N_init 20 

Algorithm Elkan 

Random_state 20 

Max_iter 700 

Fig A.1 GBTC K-Means hyperparameters 

These parameters can be varied when studying different assets or time periods. Time periods 

with minimal characteristic families of momentum should utilize a smaller number of clusters. Assets 

that are hypothesized to show more complex SRVs should use a higher number for Max_iter. 


