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Abstract

Our project addresses the issue of childcare deserts across New York State by de-
veloping an optimized strategy to allocate resources for new facility construction and
the expansion of existing childcare centers. Using a linear programming model, we
incorporated factors such as regional childcare demand, facility expansion costs, and
state-specific policies prioritizing access for children under age 5. Our findings indicate
that a targeted combination of facility expansion and new constructions is effective in
eliminating childcare deserts while remaining within budget constraints. Additionally,
our model enforces a fairness constraint, ensuring a balanced distribution of childcare
access across all regions and prioritizing areas with higher demand. Under these op-
timized conditions, we achieved a high social coverage index, significantly improving
childcare availability across the state.
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1 Introduction

Child care has extremely important significance for families and even society. For young
children, high-quality early childhood education helps shape a favorable environment for
their early growth, which in turn helps them achieve long-term success in life(Southern
Regional Education Bauer Schanzenbach,2016). In addition, good early childhood education
can alleviate parents’ stress, help them focus on their work, and enhance their professional
competitiveness. For society as a whole, sufficient child care resources help employers retain
employees and effectively reduce future crime rates among children(Elango et al., 2015). It
can be seen that providing sufficient child care has multiple positive implications, but due
to various factors such as income, child care resources are relatively insufficient. According
to relevant data, including many parts of New York, 51 of the United States is facing the
dilemma of child care deserts. The National Governors Association (NGA) believes that the
factors that hinder teenagers from accessing mental health services are high nursing costs,
imbalanced resources in mental health services among states.In the survey on the causes of
the children’s fox desert, the most commonly cited reasons are insufficient operating funds
from state and federal governments, as well as the high financial costs required to operate
child care centers(Meant,2019). In addition, previous studies have shown that a lack of
economic support for providers is one of the main reasons for childcare in deserts. Therefore,
using optimization methods to assist the New York City government in developing plans
that can provide sufficient child care resources with minimal budget constraints and ensure
fairness has positive practical significance.

2 Background

Based on the available information, this paper transforms the design of an optimal solution
to address childcare deserts under a limited budget into a linear programming problem. Due
to real-world conditions and policy constraints, multiple assumptions are applied in solving
the problem.

First, based on household income and parental employment status, different areas in New
York City are classified into high-demand and normal-demand childcare regions: regions
where at least 60% of parents are employed or the average income is $60,000 or less per year
are considered high-demand areas. For high-demand areas, if available childcare slots meet
at least half of the number of children aged 2 to 12, the area is not considered a childcare
desert. For normal-demand areas, it only needs to reach one-third of the number of children
in the same age group. In addition, New York City policies require that available slots cover
at least two-thirds of the number of children aged 0 to 5. When expanding childcare slots, the
government faces two options: selecting locations to build new facilities (which are of three
types, each with different capacities and construction costs) or expanding existing facilities,
with a maximum expansion of 500 slots or up to 0.2 times the original capacity, where costs
increase with additional slots. This part of the problem is discussed in the first section of
the main text.

Second, to address childcare challenges, New York City needs to construct new child-
care facilities. To avoid excessive concentration of resources, there are distance constraints
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between facilities, which is discussed in the second section of the main text.
Finally, considering social equity, the New York City government aims to ensure relatively

equitable access to childcare resources across regions within the budget while maximizing
the social childcare coverage index. This part of the problem is discussed in the third section
of the main text.

In summary, this paper simplifies the solution to the childcare desert issue in New York
City into three linear optimization problems, and solves them using Gurobi and Python,
discussing the practical implications of the results.

3 Methodology

3.1 The Problem of Budgeting

3.1.1 Model Assumptions

We start with the fundamental assumption that the child care scenario in NYC can be
modeled as a linear program with a finite, feasible, and convex solution space. This is
essential, as it provides the foundation for our linear programming model. Additionally, we
assume that any existing facility with a current capacity of 0 will not be expanded. This
assumption aligns with the constraint that a facility’s maximum capacity is the lesser of
500 or 1.2 times its current capacity. Since a multiplier of 1.2 on a capacity of 0 remains
0, these facilities cannot be expanded. This assumption is particularly important because a
few existing facilities have a capacity of zero.

Moreover, we assume that an unlimited number of new facilities can be established in
each area, as specific geographic constraints are not part of the problem. Finally, we assume
that all children within a given area can access any facility constructed in that area.
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3.1.2 Preliminaries

Throughout this section, we will use the following notations.

Z : Set of zip codes.

Fz : Set of existing facilities in zip code z.

S : Set of facility types available for new construction (Small, Medium, Large).

Demandz : Demand classification in zip code z (High or Normal-Demand).

Pz,0−5 : Population of children aged 0-5 in zip code z.

Pz,5−12 : Population of children aged 5-12 in zip code z.

Pz,0−12 : Population of children aged 0-12 in zip code z.

Cf,z,0−5 : Current capacity (slots) for children aged 0-5 at facility f in zip code z.

Cf,z,5−12 : Current capacity (slots) for children aged 5-12 at facility f in zip code z.

Cf,z : Total current capacity at facility f in zip code z.

TotalSlotss : Total capacity (slots) of facility size s.

Under5Slotss : Number of slots for children aged 0-5 in facility size s.

Costs : Construction cost of facility size s.

3.1.3 Decision Variables

Iz,f : Number of additional slots to be added through expansion at facility f in zip code z.

Uz,f : Number of new under-5 slots added at facility f in zip code z.

Nz,f : Number of new facilities of size s to be built f in zip code z.

3.1.4 Model Constraints

First, we deal with total slots constraints for all children under age 12. Assume that we have
identified the category of demand in zip code z, we can write the total required number of
slots RequiredTotalSlotsz as:

RequiredTotalSlotsz =


1

2
Pz,0−12 if demandz is High

1

3
Pz,0−12 if demandz is Normal

The first set of constraints dictates that the total slots after construction and expansion
should be more than the total required slots in each area z.

∑
f∈Fz

(Cz,f,0−12 + Iz,f ) +
∑
s∈S

Nz,s × TotalSlotss ≥ RequiredTotalSlotsz ∀z ∈ Z

Similarly, the constraints for total slots under age 5 are:
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∑
f∈Fz

(Cz,f,0−5 + Iz,f ) +
∑
s∈S

Nz,s × Under5Slotss ≥ RequiredUnder5Slotsz ∀z ∈ Z

Next, we consider the maximum expansion for each existing facility, which cannot exceed
20% of its capacity.

Iz,f ≤ 0.2Cz,f,0−12 ∀z ∈ Z ∀f ∈ Fz

Also, note that the capacity of each facility after expansion cannot exceed 500, assuming
Cz,f is less than 500.

Iz,f + Cz,f ≤ 500 ∀z ∈ Z ∀f ∈ Fz

Note that if Cz,f already exceeds 500, the constraint should be Iz,f = 0 instead. Also, notice
that the number of 0-5 slots cannot exceed the number of all slots in each facility. Therefore:

Uz,f ≤ Iz,f ∀z ∈ Z ∀f ∈ Fz

Finally, each variable should be a positive integer.

Iz,f , Uz,f , Nz,s ∈ Z+ ∀z ∈ Z ∀f ∈ F ∀s ∈ S

3.1.5 Objective

The objective, which is the total budget, can be divided into two parts. First is the total
cost of constructing a new facility, and second part is the total cost of expanding existing
ones. Mathematically, it can be formulated as follows.

min
∑
z∈Z

{∑
f∈Fz

(20000 + 200Cz,f,0−12)
Iz,f

Cz,f,0−12

+ 100Uz,f +
∑
s∈S

Nz,sCosts

}

3.2 The Problem of Realistic Capacity Expansion and Distance

3.2.1 Preliminaries

This problem can be viewed as an extension of previous section. We will continue to use all
notations defined before and introduce some new notations for this problem.

Lz : All potential locations for new facilities in zip code z.

Ez : All locations of existing facilities in zip code z.

T : Expansion tiers (1, 2, 3).

Di,j : Distance between location i and location j.

As the problem introduces distance constraints, the number of new facilities in each area is
now restricted by a certain number. We can calculate each region’s maximum number of
new facilities by a separate linear program.
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3.2.2 Sub-Problem: Maximum Facility Per Area

We will use the following integer program to compute the maximum number of facilities that
can be built in a certain area z. For all potential locations l ∈ Lz, we define a binary variable
yl.

yl =

{
1 if build in location l

0 Otherwise

The constraints are that for each pair of locations if the distance between them is smaller
than 0.06 miles, only one of them can build a new facility.

If Di,j ≤ 0.06, yi + yj ≤ 1 ∀i ∈ Lz ∀j ∈ Lz i ̸= j

Also, no new facility can be built near an existing facility.

If Di,j ≤ 0.06, yi = 0 ∀i ∈ Lz ∀j ∈ Ez

The objective is:

max
∑
l∈Lz

yl

The optimal value of this linear problem will be the maximum number of new facilities to
be built in area z. We denote this as mz.

3.2.3 Decision Variables

Similarly, we will only state new variables that are introduced in this problem. All other
decision variables in the former problem will be contained in this problem as well.

δz,f,t : Binary variable indicating whether tier t is fully utilized at facility f. ∀z∀f∀t

δz,f,1 =

{
1 if expansion rate ≤ 10%

0 Otherwise

δz,f,1 =

{
1 if 10% ≤expansion rate ≤ 15%

0 Otherwise

δz,f,1 =

{
1 if 15% ≤expansion rate ≤ 20%

0 Otherwise

3.2.4 Model Constraint

In addition to the constraints in the previous problem, we should also consider the following
set of constraints for this model. First, we consider the piecewise cost function constraint,
where only one of δz,f,1, δz,f,2, δz,f,3 can be 1, which indicates that the expansion rate is in
the corresponding region.
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Iz,f ≤ 10% · Cz,f,0−12δz,f,1

10% · Cz,f,0−12 · δz,f,2 ≤ Iz,f ≤ 15% · Cz,f,0−12 · δz,f,2
15% · Cz,f,0−12 · δz,f,3 ≤ Iz,f ≤ 20% · Cz,f,0−12 · δz,f,3

3∑
i=1

δz,f,i = 1 ∀z ∈ Z ∀f ∈ Fz

Note that Cz,f,0−12 is a constant and therefore the constraints are linear. Moreover, these
constraints model the changing rate of expansion cost. Next, we need to specify a constraint
for the total number of facilities that can be built in each area.∑

s∈S

Nz,s ≤ mz ∀z ∈ Z

Finally, the non-negative constraints.

Iz,f,t ∈ Z+ ∀z ∈ Z ∀f ∈ F ∀t ∈ T

δz,f,i ∈ {0, 1} ∀z ∈ Z ∀f ∈ F ∀i ∈ {1, 2, 3}

3.2.5 Objective

The objective has changed since the cost function has changed for expanding existing facili-
ties. However, the cost of building new facilities is unchanged.

min
∑
z∈Z

{∑
f∈Fz

(20000 + ExpansionPerSlotCostz,fCz,f,0−12)
Iz,f

Cz,f,0−12

+ 100Uz,f +
∑
s∈S

Nz,sCosts

}

where ExpansionPerSlotCostz,f = 200δz,f,1 + 400δz,f,2 + 600δz, f, 3

3.3 Fairness Problem

3.3.1 Preliminaries

We will introduce the following notation for this problem:

Coveragez : The coverage rate of all children under age 12 for area z.

Coverage5z : The coverage rate of all children under age 5 for area z.

These parameters can be calculated by the following formulas.

Coveragez =

∑
f∈Fz

(Cz,f,0−12 + Iz,f ) +
∑

s∈S Nz,s × TotalSlotss

Pz,0−12

Coverage5z =

∑
f∈Fz

(Cz,f,0−5 + Iz,f ) +
∑

s∈S Nz,s × Under5Slotss

Pz,0−5
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3.3.2 Decision Variables

No additional decision variables are needed for this problem.

3.3.3 Model Constraint

There are two more constraints we need to add to this problem. First, the coverage between
any two areas should not exceed 1. This can be formulated as follows:

Coveragez1 − Coveragez2 ≤ 0.1 ∀z1 ∈ Z ∀z2 ∈ Z z1 ̸= z2

Secondly, the total budget is 1 billion dollars. We can take the objective function from the
previous problem.

∑
z∈Z

{ ∑
f∈Fz

(20000 + ExpansionPerSlotCostt · Cz,f,0−12)
Iz,f

Cz,f,0−12

+ 100Uz,f +
∑
s∈S

Nz,s · Costs

}
≤ 1000000000 (1)

3.3.4 Objective

The objective is to maximize average social index, which can be formulated as follow.

max
∑
z∈Z

Coveragez + 2
∑
z∈Z

Coverage5z

4 Data Cleaning and Visualization

4.1 Data Cleaning

In this study, we focus on areas, characterized by zip codes, in New York City. The data
provided contains 1024 areas. Furthermore, there are three available options for building a
new facility, as specified in Table 1.

Facility Size # of Slots (Ages 0-5) Cost of New Facility ($)
100 slots (Small) 50 slots 65,000

200 slots (Medium) 100 slots 95,000
400 slots (Large) 200 slots 115,000

Table 1: Construction cost estimates for different sizes of child care facilities

The data set provided contains population for ages 0 to 5, 5 to 9, and 9 to 14. Since we
will only use population from 0 to 12, we estimate this by adding ages 0 to 5, 5 to 9, and
three-fifths of ages 9 to 14.
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We estimate 0-5 capacity in an existing facility by adding the capacities of infant, toddler,
preschool, and five-twelfth of children.

We also drop any existing facilities with a total capacity of zero, as they cannot be
expanded anyways.

4.2 Visualization

4.2.1 Children Population Heatmap

To better visualize the need in each area, we created a heatmap that shows the children
population in each area. As in Figure 1.

Figure 1: Heatmap of NY Child Popula-
tion Distribution

Figure 2: Heatmap of Original Social
Coverage Rate

4.2.2 Current Coverage Rate

Figure 2 shows the current child care coverage rate (before optimization), calculated by
ExistingSlots
Population

. From the heatmap, we observe that the coverage rate in all areas is lower than
0.125, therefore all areas are below the requirement.

5 Case Study and Results

5.1 Problem of Budgeting Results

After optimization, we can successfully meet all demands and constraints by using $316,248,854.
To analyze our data we first begin by grouping our zip codes into groups of 11 by their prox-
imity. This makes the data less granular and easier to view in charts. Once the data is
aggregated into groups of 11, we first look at how often each size of building was built in
each group:
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Figure 3: Distribution of New Facility Sizes
Figure 4: Expanded Slots Breakdown By
Size

From Figure 3, we can see that the overwhelming majority of the time, large buildings
are built in our zip codes. This makes sense as they provide a very large number of slots
for less than double the cost of small facilities that are built. We also see that the amount
of small and medium buildings is mostly flat across all the zip code groups, while the large
buildings frequency has a discernible shape. One unique point is that the peak of the large
buildings being built happens in zip code group 25, which corresponds to zip codes in the
Northern Poughkeepsie area. This area may be susceptible to childcare deserts due to its
low socioeconomic status in its resident population. Next, we look at expansion vs building
new facilities. The results are seen below:

In Figure 4 we can see that most slots are added by building new facilities rather than
expanding current facilities. Looking deeper, we can see that both distributions roughly
have the same shape. This implies that when slots are added, usually you must build new
facilities and expand existing ones, you just obtain more slots by building. It also implies
that there is no zip code or geography where it is disproportionally better to expand vs build
new slots, the shapes are roughly the same. Finally, we look at expansion in detail, analyzing
which type of slots are usually added when facilities are expanded. The results are shown in
Figure 5:
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Figure 5: Expanded Slots Breakdown By Size

In Figure 5, we see a density of points on the x-axis, implying that most of the time
you will be adding 0-5 slots. This makes sense as most existing facilities had a shortage of
0-5 slots. We also see that the range of the 0-5 slots is a lot higher, reaching 4000 in some
zip code groups. Whereas for 5-12 slots, we add at most 250 in a zip code group. The last
deduction that can be made from the data is that 5-12 slots are only really built when not
a lot of 0-5 slots are built. This indicates that perhaps facilities may have a shortage in one
type of slot or the other. As a comparison to Figure 2, the heatmap of social coverage rate
can be found in Figure 6.

Figure 6: Expanded Slots Breakdown By Size

12



5.2 Problem of Realistic Capacity Expansion and Distance Re-
sults

After optimization, we can successfully meet all childcare demands and facility constraints
by using $320,532,485. Once again, to analyze our data we first begin by grouping our zip
codes into groups of 11 by their proximity. This makes the data less granular and easier to
view in charts. Once the data is aggregated into groups of 11, we first look at how often
each size of building was built in each group:

Figure 7: Expanded Slots Breakdown By
Size

Figure 8: Expanded Slots Breakdown By
Size

From the chart, we can see that there is a similar pattern to problem 1 despite there being
new constraints with locations where new facilities can be built. The overwhelming majority
of new facilities that are built are still large. This makes sense as the fixed cost for building
a new facility has not changed from problem 1 and thus a large building still provides a
large number of slots for a disproportionate premium to small buildings. However, one new
observation in problem 2 is that slightly more large facilities are built in the geographic zone
around zip code 20. We have a peak of 175 large facilities in those groups as opposed to
160 large facilities from problem 1. This could be due to the fact that the piecewise cost
introduced in problem 2 encourages building in those zip codes rather than expanding their
sparse existing facilities. In other zip code groups, slight expansion in the lowest cost bracket
could have been enough to close the desert. Next, we look at slots that were added through
expansion versus by building new facilities:

In this chart we see a similar trend as problem 1, where most slots come from building
new facilities as opposed to expanding. The distribution follows the same bimodal shape as
well, with peaks around zip code group 8 and zip code group 23. The key distinction is that
the number of 0-5 slots that come from expansion is now fewer than problem 1. It is still the
same shape, meaning that expansion still usually happens in the same geographies, but the
magnitude is lower. This makes sense as larger expansions now cost proportionally more per
slot. This incentivize the model to prefer building over expanding as the cost for building
new facilities did not change from problem 1. From looking at the shape of the distributions,
we can also deduce that the new location constraints did not hugely affect the location in
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which slots are added. For example, if a certain zip code group had a large concentration of
existing facilities, it would be hard to build any new locations there and thus the shape of
our chart in that zip code group would be lower. However, the shape seems to largely be the
same. To confirm this, further research must be done into the granular locations of the data.
Finally, we can look at the age demographic for which we expanded slots in our facilities:

Figure 9: Expanded Slots Breakdown By Size

From this chart, we see a density in the x-axis, implying that when slots are added,
most of the are in the 0-5 age capacity. This makes sense as most existing facilities had a
shortage in the 0-5 age capacity slots. Next we see an elbow shape which implies that in
most scenarios, you are either expanding 0-5 slots or 5-12 slots, but not both. We also see
a peak in the 5-12 slots when you are not adding a lot of 0-5 slots. In particular, we only
see a large number of 5-12 slots being added when only a few 0-5 slots are added. We also
see that the range of the x-axis is far larger than that of the y-axis. This means that in
most scenarios we had to add far more 0-5 slots than 5-12 slots. This makes sense as the
demand requirement for 0-5 slots is stricter for NYS as mentioned in the instructions. One
difference from problem 1 is that the largest points in this scatter plot are lower than those
from problem 1. This makes sense as with the new piecewise cost function, it can get more
expensive to expand and thus building is preferred. This trend is also seen in the previous
bar graph where more slots came from new facilities rather than expanding existing facilities.

5.3 Problem of Fairness Results

The model of the problem of fairness turns out to be infeasible, which means that with the
given funding ($1 billion), we cannot address the problem of fairness.
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6 Conclusion

First, in the first part of the main text, this paper provides an optimal budget solution to
meet childcare needs by expanding existing facilities and constructing new ones, assuming
there are no geographical constraints or distance limitations. This is solved using a linear
programming model. Under this scenario, the minimum budget achieved is approximately
316 million USD.

Based on the first scenario, the model in the second part of the main text incorporates
distance limitations between facilities and the non-linear cost function associated with ex-
panding existing facilities in real-world settings. To address the distance constraint, two
strategies are employed: first, by calculating the distance between potential new facilities
and existing facilities, where if the distance is less than the specified minimum of 0.6 miles, it
is recorded as a constraint, prohibiting construction of a new facility at that location; second,
for each potential location within a zip code, the distance between them is calculated, and
if it is less than 0.6 miles, a constraint is added to allow only one facility to be constructed
between those two locations. Under this scenario, the minimum budget required by the
model is approximately 321 million USD.

In the third part of the main text, the model considers the equity of resource distribution
to ensure minimizing disparities in childcare services between different areas. Additionally,
the New York City government aims to maximize the social childcare coverage index within
the budget constraints. To achieve this, new constraints are introduced, and a linear model is
developed with the objective of maximizing the social childcare coverage index. However, it
is ultimately found that the issue of equity cannot be resolved under the current conditions.

This issue highlights the advantages of data-driven decision-making in helping the govern-
ment make effective use of fiscal spending, providing solutions, and promoting social equity.
In the future, this approach is expected to help communities build an environment conducive
to children’s growth, enhance the government’s ability to provide public resources, and has
significant real-world implications.
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